Inflammatory complications in CVID—what is new and what can be done?

Peter Bergman, MD, PhD
Assoc Prof, Consultant Physician
Dept of Laboratory Medicine, Clinical Microbiology
Karolinska Institutet
Immunodeficiency Unit,
Karolinska University Hospital, Stockholm, Sweden
PID-patient care: an area in rapid transition
What is a PID-patient?
Diagnosis and clinical work-up

Neurology

Infectious diseases

Gastro

PID-patients

Hematology

Microbiology

Reuma

Lung

Immunology

Clinical genetics
Case: Robert, 35 years

- Normal childhood, bi-linear Evan’s syndrome diagnosed at age 17 (Tpk, RBC), increased susceptibility to infections around age 25, referred from hematology to us at age 31
- IgG: 2.2 g/L, IgA: 0, IgM: 0
- No vaccine response, low memory B-cells, splenomegaly, Evan’s syndrome
- CVID diagnosis was given and scIG was started
- Few infections, occasional findings of *H. Influenzae* in sputum

- Last 6 months: Gradual deterioration of general appearance
- Very tired, nightly chills, bad physical performance
- Difficult to work and to take care of his family with a newborn baby
Main problem for Robert: the lungs

- **Spirometry:** Static lung volumes: 63% of expected; Dynamic spirometry: 60%, Diff capacity: 74%
- **Pulmonary X-ray:** ”diffuse infiltrations bilaterally of unspecific nature”.
- **PET-CT:** ”several multiple hyper-metabolic nodules in the gut, along the aorta, inguinal, axillar, spleen and in the lung”
- **BAL:** no malignant cells, no TB, fungi, virus or bacteria, hyperinflammatory and mixed cellular pool
- **Needle punction of a lung infiltrate:** mixed lymfocytic infiltration, no malignant cells, no granuloma

- How should this patient be handled?
How is CVID defined?

- **Main criteria:**
 - Clinical symptoms: infections, autoimmunity or lymphoproliferation (at least one)
 - Hypogammaglobulinemia (at least 2 measurements, 3 weeks apart)
 - Low IgA or IgM
 - Low or absent response to polysaccarides or protein antigens
 - Other causes to hypogammaglobulinemia should be excluded

- **Supporting:** reduced memory B cell subsets and/or increased CD21-low subsets by flow cytometry
Facts about CVID

- Unknown cause
- Prevalence is around 1:20,000-1:30,000
- Onset can occur in children or adults
- Usually long time from onset of symptoms to diagnosis
- Not directly inherited, i.e. not mendelian genetics

- **A Danish study (2017)**
 - Prevalence 1:26,000
 - Median age onset of symptoms = 29 years
 - Median age at diagnosis = 40 years
 - Median diagnostic delay = 7 years

Westh et al, 2017
Infections

- S. pneumoniae
- H. influenzae
- S. aureus
- M. catarrhalis
- P. aeruginosa in BE

Inflammatory and Autoimmune

Lung

- LIP (Lymphocytic Interstitial Pneumonia)
- GLILD (Lymphadenopathy, Nodules/Opacities)

Liver

- Splenomegaly
- Nodular regenerative hyperplasia
- Granulomatous hepatitis

Intestine

- Diarrhoea
- Malabsorption
- Inflammatory bowel disease
- Nodular lymphoid hyperplasia
- Idiopathic enteropathy

Autoimmune

- Immune thrombocytopenic purpura
- Autoimmune Hemolytic anaemia
- Evans syndrome
- Rheumatoid Arthritis
- Anti-IgA antibodies
- Alopecia & Other

Jolles et al, 2013
Clinical phenotypes in CVID

CVID

No Disease Related Complications (62% - 78%)

Disease Related Complications (22% - 38%)

Cytopenias (6% - 15%)
p < 0.0005

Lymphoproliferation (6% - 15%)
p < 0.0001

Enteropathy (1% - 4%)
p < 0.0005

Jolles et al, 2013
Intestinal problems in CVID

A recent study where this question was addressed:

- GI symptoms in 103 CVID-patients and GI histopathological findings in 53 CVID-patients

- **Symptoms:** bloating (34%), pain (30%), and diarrhea (26%).

- **Histopathology:**
 - increased intraepithelial lymphocytes in the descending part of the duodenum, i.e., “celiac-like disease” (46% of patients),
 - decreased numbers of plasma cells in GI tract mucosa (62%)
 - lymphoid hyperplasia (38%),

- Reduced plasma cells in GI mucosa were associated with B-cell phenotypic characteristics of CVID, and increased serum levels of sCD14 (P =0.025), sCD25 (P =0.01), and sCD163 (P =0.04).

- Norovirus infection was not found as a cause of CVID enteropathy (none)

Almost 50% of CVID-patients had inflammation as shown with PAD Around 30% had GI-symptoms

Jorgensen et al, 2016
Inflammation in CVID

Small intestine (lymphocytic infiltrates)

Colon (fewer plasma-cells)

Small intestine (lymphoid aggregates)

CVID

Normal

Jorgensen et al, 2016
Intestinal problems are common in CVID

- Medical history
- Monitoring with fecal calprotectin
- Gastroscopy
- Colonoscopy

- Discussion with gastroenterologists
Liver disease in CVID

Table 2: Clinical manifestations, laboratory tests/examinations for liver involvement of CVID, and possible causes of liver abnormalities

<table>
<thead>
<tr>
<th>Clinical manifestations</th>
<th>Abnormalities in laboratory tests</th>
<th>Abnormalities in liver examinations</th>
<th>Possible causes of liver abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Asymptomatic</td>
<td>A: Liver function tests</td>
<td>A: Imaging examinations</td>
<td>Infections (bacterium, parasite, hepatitis virus (A-G), Epstein-Barr virus, cytomegalovirus, human acquired immunodeficiency virus, etc)</td>
</tr>
<tr>
<td>B: Symptomatic</td>
<td>• Increased level of ALP, r-GT</td>
<td>• Structural alterations on ultrasonography, CT scan, or MRI</td>
<td>• Autoimmunity</td>
</tr>
<tr>
<td></td>
<td>• Increased level of ALT, AST and bilirubin</td>
<td>• Esophageal varices on endoscopy B: Histology</td>
<td>• Lymphoproliferation</td>
</tr>
<tr>
<td></td>
<td>• Decreased level of albumin B: Coagulation markers</td>
<td>• Non-specific inflammation</td>
<td>• Malignancies</td>
</tr>
<tr>
<td></td>
<td>• Increased PT, APTT</td>
<td>• NRH</td>
<td>• Dysfunction of metabolism (deposition of copper, iron, fat, etc.)</td>
</tr>
<tr>
<td></td>
<td>• Decreased level of fibrinogen</td>
<td>• Granuloma</td>
<td>• Drugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Portal hypertension</td>
<td>• Toxins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liver cirrhosis</td>
<td>• Alcohol</td>
</tr>
</tbody>
</table>

ALP alkaline phosphatase, r-**GT** gamma glutamyl transpeptidase, **ALT** alanine transaminase, **AST** aspartate transaminase, **PT** prothrombin time, **APTT** activated partial thromboplastin time, **CT** computed tomography, **MRI** magnetic resonance imaging; **NRH** nodular regenerative hyperplasia

Song et al., 2017
Liver disease in CVID can occur – but is less common than GI-problems

- We follow our patients with liver enzymes, GT, ALP
- Regular ultrasound to monitor potential hepatomegaly / splenomegaly
- If pathological findings – discussion with hepatologists
Lung disease in CVID: Bronchiectasis

- 10-20 % of CVID-patients
- Likely a consequence of frequent infections
- A marker for lung-damage
- Could lead to chronic colonisation by opportunistic bacteria
Bronchiectasis is not associated with other CVID-related co-morbidities

TABLE III. Summary of statistically significant relationships (univariate analysis)

<table>
<thead>
<tr>
<th></th>
<th>Autoimmunity</th>
<th>Granulomas</th>
<th>Bronchiectasis</th>
<th>Splenomegaly</th>
<th>Splenectomy</th>
<th>Pneumonia</th>
<th>Lobectomy</th>
<th>Lymphoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteropathy</td>
<td>+++</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmunity</td>
<td>+</td>
<td>+++</td>
<td></td>
<td></td>
<td>+++</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granulomas</td>
<td></td>
<td>+</td>
<td>++</td>
<td>+++++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td></td>
<td></td>
<td>+++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splenomegaly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splenectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG trough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at onset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+, Positive association, $P < .05$; ++, positive association, $P < .01$; ++++, positive association, $P < .001$; -, negative association, $P < .05$; --, negative association, $P < .01$; ---, negative association, $P < .001$; empty cells, $P \geq .05$.

N=2212 patients from the ESID-registry

Gathmann et al, 2014
GLILD: granulomatous lymphocytic interstitial lung disease

- **Clinical:** dyspnea, fatigue, low-grade fever
- **Physiology:** static, dynamic and diff cap
- **Radiology:** HRCT, ground-glass appearance, nodules
- **Nuclear medicine:** PET/CT, hypermetabolic nodules
- **Fibroscopy, BAL:** inflammatory cells only, no malignant cells, no infection
- **PAD, Histology:** lymphocytic infiltrations, nodular aggregates

- Other causes should be excluded (TB, lymphoma and sarcoidosis)
GLILD is sign of immundysregulation

- Approximately 10–20 % of patients with CVID develop GLILD
- Splenomegaly and adenopathy
- Cytopenias and evidence of immune dysregulation, with T cells skewed toward a memory phenotype
- Histologic evaluation of pulmonary and lymphatic tissue is most consistent with dysregulated lymphoproliferation (T- and B-cells).
- GLILD appears to be the pulmonary manifestation of a generalized, multi-systemic lymphoproliferative disease.
GLILD requires immunosuppressive therapy

- Steroids can work, but not always
- **Rituximab** (weekly doses of IV rituximab (375 mg/m²/infusion) for 4 weeks
- **Azathioprine** (oral, 1.0–2.0 mg/kg/day, 18 months duration).
- Rituximab infusions were repeated at 4–6 month intervals, for 3 or 4 total courses (12–16 infusions).
- Evaluation together with pulmonologists
- No consensus on the optimal protocol or if other treatments can be better.

Chase et al, 2013
Rituximab and mycophenolate mofetil, 3 months treatment

Improvement measured by PET-CT (FDG-uptake)

Improved lung-function and physical performance

Jolles et al, 2016
Laboratory biomarkers of GLILD and Lymphoproliferation

- Elevated IgM
- Suboptimal IGRT
- Inversely related to IgA
- Episodes of thrombocytopenia
- Elevated β-2 microglobulin (>3mg/ml)
 (sIL-2R is a similar marker)

B cell biomarkers
- Low smB- <2%
- IgD⁺IgM⁺CD27⁺ of CD19⁺ B cells
- Expansion of transitional B cells
 (Trhl >9% CD38⁺IgM⁺)
- CD21low B cells (> 10% of B cells)

T cell biomarkers
- CD4 T cells < 200 x 10⁶ cells/l*
- Reduced naive CD4 T cells*
- Reduced Regulatory T cells

Clinical and Radiological Features of Lymphoproliferation

- GLILD
- Splenomegaly
- Widespread lymphadenopathy
 - Granulomatous Hepatitis
 - Enteropathy
 - Granulomas at other sites

Polyarthritus

Jolles et al, 2016
GLILD is connected to a bad prognosis

TABLE I. Noninfectious pulmonary disorders complicating CVID

<table>
<thead>
<tr>
<th>Group 1</th>
<th>No pulmonary disease (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 2</td>
<td>Bronchiectasis (n = 15)</td>
</tr>
<tr>
<td></td>
<td>Asthma (n = 8)</td>
</tr>
<tr>
<td>Group 3A (GLILD)</td>
<td>Granulomatous disease (n = 5)</td>
</tr>
<tr>
<td></td>
<td>LIP (n = 4)</td>
</tr>
<tr>
<td></td>
<td>Lymphoid hyperplasia (n = 2)</td>
</tr>
<tr>
<td></td>
<td>Follicular bronchiolitis (n = 1)</td>
</tr>
<tr>
<td></td>
<td>B-cell lymphoma (n = 1)</td>
</tr>
<tr>
<td>Group 3B (other ILDs)</td>
<td>BOOP (n = 3)</td>
</tr>
<tr>
<td></td>
<td>Hypersensitivity pneumonitis (n = 1)</td>
</tr>
<tr>
<td></td>
<td>Metastatic gastric carcinoma (n = 1)</td>
</tr>
</tbody>
</table>

BOOP, Bronchiolitis obliterans organizing pneumonia.

FIG 2. Kaplan-Meier survival plot demonstrating differences between the 2 groups of patients (GLILD vs non-GLILD). The median survival of 28.8 years in groups 1, 2, and 3B (solid line) is compared with the median survival of 13.7 years in group 3A (dashed line; P < .001). There is no statistical difference in survival between groups 1, 2, and 3B. Time is from the date of CVID diagnosis.

Bates et al, 2004
GLILD: how bad is it?

Table 4: Association between comorbidities and all-cause mortality. Results of Cox proportional hazard model with comorbidities as time-dependent covariate (N = 972)

<table>
<thead>
<tr>
<th>Comorbidity</th>
<th>HR (95% CI)(^a)</th>
<th>P-Value</th>
<th>HR (95% CI)(^b)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchiectasis</td>
<td>0.84 (0.44; 1.62)</td>
<td>0.612</td>
<td>0.83 (0.40; 1.86)</td>
<td>0.633</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>2.11 (1.17; 3.82)</td>
<td>0.013</td>
<td>1.67 (0.82; 3.39)</td>
<td>0.155</td>
</tr>
<tr>
<td>Autoimmunity (organ/ systemic)</td>
<td>1.61 (0.79; 3.27)</td>
<td>0.187</td>
<td>1.52 (0.67; 3.43)</td>
<td>0.311</td>
</tr>
<tr>
<td>Autoimmune cytopenia</td>
<td>0.72 (0.22; 2.35)</td>
<td>0.591</td>
<td>1.08 (0.33; 3.57)</td>
<td>0.897</td>
</tr>
<tr>
<td>Enteropathy</td>
<td>1.39 (0.54; 3.56)</td>
<td>0.493</td>
<td>0.97 (0.28; 3.41)</td>
<td>0.962</td>
</tr>
<tr>
<td>Solid tumor</td>
<td>3.19 (1.55; 6.57)</td>
<td>0.002</td>
<td>2.69 (1.10; 6.57)</td>
<td>0.030</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>3.95 (1.81; 8.66)</td>
<td>0.001</td>
<td>5.48 (2.36; 12.71)</td>
<td><.0001</td>
</tr>
<tr>
<td>GLILD</td>
<td>3.80 (1.47; 9.85)</td>
<td>0.006</td>
<td>4.85 (1.63; 14.39)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

\(^a\) Univariable analysis
\(^b\) Adjusted for age of CVID symptoms onset

Odnoletkova et al, 2018
GLILD management: recommendations

First line: corticosteroids 30-70 mg/day

TABLE IV. Consensus on second-line drug therapy in GLILD

<table>
<thead>
<tr>
<th>Criteria</th>
<th>No. of respondents</th>
<th>% Agree</th>
<th>% Disagree</th>
<th>Mean ± SD score *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus</td>
<td>Azathioprine</td>
<td>21</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rituximab</td>
<td>21</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mycophenolate</td>
<td>21</td>
<td>81</td>
<td>5</td>
</tr>
</tbody>
</table>

No consensus

<table>
<thead>
<tr>
<th>Criteria</th>
<th>No. of respondents</th>
<th>% Agree</th>
<th>% Disagree</th>
<th>Mean ± SD score *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abatacept</td>
<td>18</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Anti-TNF agents</td>
<td>17</td>
<td>29</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Ciclosporin</td>
<td>16</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Hydroxychloroquine</td>
<td>19</td>
<td>42</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Methotrexate</td>
<td>17</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Sirolimus</td>
<td>18</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Tacrolimus</td>
<td>18</td>
<td>22</td>
<td>33</td>
</tr>
</tbody>
</table>

Inflammation in CVID

Hurst et al, 2017
Increase in serum IgM is a marker for progressive lung disease

- Monocytes produce BAFF, which stimulate B-cells to proliferate and produce IgM
- Rituximab reverse this process and improve symptoms
What about whole genome sequencing and CVID?

- < 5% genetic causes to CVID-like syndromes
- CVID is likely to be a polygenic disease with multiple novel susceptibility loci implicated (Orange et al, 2011)
- Application of whole genome sequencing has revealed several key genes for CVID
 - TACI
 - CD19
 - CD81
 - CD21
 - NFKB
 - And more

It is likely that CVID will be divided in many different subgroups or separate diagnostic entities in the future

Ameratunga et al, 2018
Complex genetic network in CVID

- TACI
- NLRP12
- BAFF-R
- SKIV2L

34 CVID-patients
WGS + RNAseq

< 5% of CVID-patients have a known genetic cause to their disease and >95% do not have a known disease gene implicated

Van Schouwenburg et al, 2015
Back to our patient: what happened?

- We decided to start with immunosuppression:
- Important to **rule out lymphoma** (a lymph-node should be examined)
- Check **latent HBV** (HBsAg, HBV DNA, anti-HBc, can be positive due to IgG-substitution)
- Check **latent TB** (PPD + IGRA-test)
- Rule out **Sarcoidosis** (ACE, can be high due to inflammation)
- Prednisolone (Sarcoidosis-protocol, start 40 mg/day, down to 10-15 mg/day)
- New PET-CT after 3 months showed almost complete remission of hypermetabolic nodules
- Clear improvement of general appearance and physical condition – but for how long?
Final reflections and take home messages

- CVID-patients are out there: please find them and refer them!
- CVID with inflammatory complications is connected with high morbidity and mortality.
- CVID is most likely several different disorders from a genetic perspective
- We lack information about underlying mechanisms
- We lack prognostic markers
- PID is definitely more than infections – we need to think ”immunodysregulation”.
- Immunosuppression should be used more often in CVID-patients with inflammation.
- Multidisciplinary work is necessary!
The Team at Karolinska Univ Hospital

- **Our Doctors:**
 - Dr. Anna-Carin Norlin, MD, PhD
 - Dr. Peter Bergman, MD, PhD, Assoc Prof.
 - Dr. Emelie Wahren-Borgström, MD, PhD
 - Prof Edvard Smith, MD, PhD
 - Dr. Rolf Gustavsson, MD, PhD

- **Our nurses:**
 - Susanne Hansen
 - Kristina Johansson
 - Maria Lindén

- **Research network**
 - Petter Brodin
 - Yenan Bryceson
 - Kristian Riesbeck
 - Fredrik Kahn

- **Our aim is to develop a ”National Competence Center” within the area of Primary Immunodeficiency in adults. Please, contact us for referrals.**
Thank’s for your attention!

If you have further questions or comments, please contact me at: peter.bergman@ki.se